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Graphiques Probabilistes

1-2 juin 2023 Nantes, LS2N, site de Polytech’Nantes (France)

Lei ZAN∗†, Anouar Meynaoui∗, Charles K. Assaad†, Emilie Devijver∗, and Eric Gaussier ∗

∗Univ. Grenoble Alpes, CNRS, INP, LIG
†EasyVista

Z. Lei (UGA, EasyVista) CMI Estimator for Mixed Data and Associated Test 1 / 16



Challenges & Objectives

Outline

1 Challenges & Objectives

2 CMI Estimator for Mixed Data and Associated Test

3 Limitations and future work

Z. Lei (UGA, EasyVista) CMI Estimator for Mixed Data and Associated Test 2 / 16



Challenges & Objectives

Challenges & Objectives

Mixed data occur frequently in many applications, such as health, marketing, medical, and
finance. (Ahmad and Dey, 2007; Hennig and Liao, 2013; Morlini and Zani, 2010)

e.g.
Index message dispatcher bolt metric bolt check message bolt

1 0.56 0.51 Normal
2 0.60 0.53 Warning
3 0.87 0.52 Critial
4 1.06 0.51 Normal
5 0.58 0.54 Normal

. . . . . . . . . . . .
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Challenges & Objectives

Challenges & Objectives

Measuring the (in)dependence between random variables from data when the underlying joint
distribution is unknown plays a key role in several settings:

1. Causal discovery (Spirtes et al., 2000)
2. Graphical model inference (Whittaker, 2009)
3. Feature selection (Vinh, Chan, and Bailey, 2014)

Objectives: Estimating and testing conditional independence via Conditional Mutual
Information (CMI), from observable mixed data.

Conditional Mutual Information (CMI) has good properties:
I(X ,Y |Z ) = 0 ⇒ X |= Y |Z
I(X ,Y |Z ) ̸= 0 ⇒ X ̸ |= Y |Z
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CMI Estimator for Mixed Data and Associated Test

Hybrid conditional mutual information estimation for mixed data
(CMIh)

Consider 3 mixed random vectors X t,ℓ,Y t,ℓ and Z t,ℓ. X t,ℓ(resp. Y t,ℓ, Z t,ℓ) can be denoted as
(X t ,X ℓ), where

X t contains all quantitative dimensions of X t,ℓ

Xℓ contains all qualitative dimensions of X t,ℓ

The Conditional Mutual Information I(X t,ℓ;Y t,ℓ|Z t,ℓ) is defined as:

I(X t,ℓ;Y t,ℓ|Z t,ℓ) = H(X ℓ,Z ℓ) + H(Y ℓ,Z ℓ)− H(X ℓ,Y ℓ,Z ℓ)− H(Z ℓ) + H(X t ,Z t |X t ,Z t )

+H(Y t ,Z t |Y ℓ,Z ℓ)− H(X t ,Y t ,Z t |X ℓ,Y ℓ,Z ℓ)− H(Z t |Z ℓ)

=⇒ I(X t,ℓ;Y t,ℓ|Z t,ℓ) is a combination of
Entropy of qualitative dimensions
Entropy of quantitative dimensions conditioning on qualitative dimensions
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CMI Estimator for Mixed Data and Associated Test

Hybrid conditional mutual information estimation for mixed data
(CMIh)

Entropy of qualitative dimensions can be estimated as:

Ĥ(X ℓ,Z ℓ) = −
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P̂Xℓ,Zℓ (xℓ, zℓ) ∗ log
(

P̂Xℓ,Zℓ (xℓ, zℓ)
)

Entropy of quantitative dimensions conditioning on qualitative dimensions can be estimated
as:

Ĥ(X t ,Z t |X ℓ,Z ℓ) =
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P̂Xℓ,Zℓ (xℓ, zℓ)Ĥ(X t ,Z t |X ℓ = xℓ,Z ℓ = zℓ)

P̂Xℓ,Zℓ (xℓ, zℓ) is estimated using histograme.

Ĥ(X t , Z t |Xℓ = xℓ, Z ℓ = zℓ) is estimated using the nearest neighbors estimator (Kozachenko and
Leonenko, 1987):

Ĥ(X t
, Z t |Xℓ = xℓ

, Z ℓ = zℓ) = ψ(nxz) − ψ(kxz) + log
(
vdxz

)
+

dxz

nxz

nxz∑
i=1

log ξxz(i)
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CMI Estimator for Mixed Data and Associated Test

Hybrid conditional mutual information estimation for mixed data
(CMIh)

Experiments of estimator
Configuration of experiments:

Scenarios X Y Z
Dependence quantitative quantitaive, Gaussian quantitative, Gaussian

Dependence mixed qualitative, uniform quantitative, uniform
Dependence mixed imbalanced quantitative, exponential qualitative, Poisson

Conditional dependence quantitative quantitaive, Gaussian quantitative, Gaussian qualitative, binomial
Conditional dependence mixed qualitative, uniform quantitative, uniform qualitative, binomial

Conditional dependence mixed imbalanced quantitative, exponential qualitative, Poisson qualitative, binomial
Conditional independence quantitative quantitaive, Gaussian quantitative, Gaussian qualitative, binomial

Conditional independence mixed quantitaive, uniform qualitative, binomial qualitative, uniform
Conditional independence mixed imbalanced quantitaive, exponential qualitative, binomial qualitative, Poisson
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CMI Estimator for Mixed Data and Associated Test

Hybrid conditional mutual information estimation for mixed data
(CMIh)

Experiments of estimator
MSE (on a log-scale) of each method with sample size n ∈ {500, 600, ..., 2000} over 100
repetitions.
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CMIh FP LH MS RAVK

Conclusions:
FP performs well in the purely quantitative case;
MS and RAVK have similar performance in most cases and MS has a main drawback as it gives the
value close to 0 in some particular cases;
LH and CMIh, overall, are more robust than the other ones, but LH is more computation-costly than
CMIh.
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CMI Estimator for Mixed Data and Associated Test

Local-Adaptive permutation test for mixed data (LocAT)

Hypothesis Null & Hypothesis Alternative:
H0 : X |= Y |Z
H1 : X ̸ |= Y |Z

The main concept of the local permutation test (LocT) can be described as follows for three
one-dimensional random variables, namely X , Y , and Z :

1. Estimate the conditional mutual information of the original data as Î(X ,Y |Z ),
2. Shuffle the value of X within its neighbours that have a similar Z value, resulting in Xπ . This

permutation ensures that Xπ |= Y |Z ,
3. Repeat Step 2 B times, and estimate Îi (Xπ,Y |Z ) for each permutation i ∈ {1, . . . ,B},
4. Calculate p-value by using Î(X ,Y |Z ) and {̂Ii (Xπ,Y |Z )}i∈{1,...,B}.

* Intuitive explanations:
If X |= Y |Z , in most cases, Îi (Xπ,Y |Z ) ≈ Î(X ,Y |Z ), where i ∈ {1, . . . ,B}.
If X ̸ |= Y |Z , in most cases, Îi (Xπ,Y |Z ) ≥ Î(X ,Y |Z ), where i ∈ {1, . . . ,B}.

Extend local permutation test (LocT) to mixed data, by defining the nearest neighbours
should have the same qualitative values in Z and denote it as (LocAT).
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Local-Adaptive permutation test for mixed data (LocAT)

Experiments of independent test
Here, we propose to analyze 3 structures that are classical:

Chain: X− > Z− > Y
Fork: X < −Z− > Y
Collider: X− > Z < −Y

For each structure, we consider the following configurations of experiments:
tℓt . X and Z are quantitative, Y is qualitative;
ttt . X Y and Z are quantitative;
ℓℓt . X and Y are qualitative, Z is quantitative;
tℓℓ. X is quantitative, Y and Z are qualitative;
ttℓ. X and Y are quantitative, Z is qualitative;
ℓℓℓ. X Y and Z are qualitative.

We use acceptance rate over 10 repetitions of two threholds (0.01 and 0.05) to show the
results:

The acceptance rate closer to 1 under different threshold the better.
The number of sampling point is 500.
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Local-Adaptive permutation test for mixed data (LocAT)

Experiments of independent test

CMIh-LocT CMIh-LocAT CMIh-GloT MS-LocT MS-LocAT MS-GloT
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

C
ha

in

tℓt 1 1 1 1 0 0 1 1 1 1 1 1
ttt 1 1 1 1 0 0 1 0.9 1 0.9 0 0
ℓℓt 1 0.9 1 0.9 1 0.8 1 1 1 1 1 1
tℓℓ 1 1 1 1 1 1 1 1 1 1 1 1
ttℓ 0 0 0.8 0.4 0 0 0 0 0.5 0.3 0 0
ℓℓℓ 1 0.9 1 0.9 1 1 1 1 1 1 1 1

Fo
rk

tℓt 0.9 0.9 0.9 0.9 0 0 1 1 1 1 1 1
ttt 1 1 1 1 0 0 1 1 1 1 0 0
ℓℓt 1 1 1 1 1 1 1 1 1 1 1 1
tℓℓ 1 1 1 0.9 1 1 1 1 1 1 1 1
ttℓ 0 0 0.9 0.8 0 0 0 0 0.8 0.5 0 0
ℓℓℓ 1 1 1 1 1 1 1 0.9 1 1 1 1

C
ol

lid
er

tℓt 1 1 1 1 1 1 0 0 0 0 0 0
ttt 1 1 1 1 0.8 0.9 1 1 1 1 1 1
ℓℓt 1 1 1 1 1 1 0 0 0 0 0 0
tℓℓ 0 0 0.4 0.7 0 0 0 0 0 0 0 0
ttℓ 0.6 1 1 1 0.2 0.4 0 0 0 0 0 0
ℓℓℓ 1 1 1 1 1 1 1 1 1 1 0.4 0.9

Conclusions:
CMIh with the test LocAT allows one to correctly identify the true (in)dependence relation on all
configurations of all structures;
For other combinations, these is at least one case where it can not work.
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Limitations and future work

Limitations and future work

The proposed test may suffer from the problem indicated in 1.

Check the performance of the method on more sophisticated structures.

1Shah, Rajen & Peters, Jonas. (2018). The Hardness of Conditional Independence Testing and the Generalised Covariance
Measure. Annals of Statistics. 48. 10.1214/19-AOS1857.
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Thank you !
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