Structured Set Variable Domains in Bayesian Network Structure Learning using
Constraint Programming

Fulya Trosser, | Simon de Givry, ! George Katsirelos >

! Université Fédérale de Toulouse, ANITL, INRAE, UR 875, 31326 Toulouse, France
2 MIA Paris-Saclay, INRAE, AgroParisTech, France
fulya.trosser @hotmail.com, simon.degivry @inrae.fr, gkatsi @ gmail.com.com

Abstract

Constraint programming is a state of the art technique
for learning the structure of Bayesian Networks from data
(Bayesian Network Structure Learning — BNSL). However,
scalability both for CP and other combinatorial optimization
techniques for this problem is limited by the fact that the ba-
sic decision variables are set variables with domain sizes that
may grow super polynomially with the number of random
variables. Usual techniques for handling set variables in CP
are not useful, as they lead to poor bounds. In this paper, we
propose using decision trees as a data structure for storing sets
of sets to represent set variable domains. We show that rela-
tively simple operations are sufficient to implement all propa-
gation and bounding algorithms, and that the use of these data
structures improves scalability of a state of the art CP-based
solver for BNSL.

Introduction

Bayesian Networks (BNs) are directed probabilistic graph-
ical models, which can describe a normalized joint prob-
ability distribution over a potentially large set of random
variables, by exploiting conditional independence to decom-
pose the function. Learning the structure of BNs from data
(the Bayesian Network Structure Learning problem, BNSL)
is a challenging combinatorial optimization problem. There
exist constraint-based approaches to learn BNs, which use
local conditional independence tests, and score-based ap-
proaches, which use a decomposable score function to score
each potential structure and aim to find the structure that
minimizes this score. The former are known to be efficient,
but have trouble with noisy data. The latter yield a known to
be NP-hard problem (Chickering 1995), which additionally
has proved very challenging in practice.

There exist complete methods for score-based BNSL
based on dynamic programming (Silander and Myllyméki
2006), heuristic search (Yuan and Malone 2013; Fan and
Yuan 2015), maximum satisfiability (Berg, Jarvisalo, and
Malone 2014), branch-and-cut (Bartlett and Cussens 2017)
and constraint programming (van Beek and Hoffmann 2015;
Trosser, de Givry, and Katsirelos 2021). Branch-and-cut and
constraint programming have proven to be the most suc-
cessful of these methods. However, scaling them up remains
challenging. One challenge has to do with the decomposi-
tion of the scoring functions: these assign a score to each

potential set of parents of each vertex and the score of a spe-
cific structure is the sum of the scores of each parent set.
This means that the objective function must have a term for
each potential parent set, a potentially exponential number
of terms. There are various methods by which this number is
made manageable, but it is still among the greatest obstacles
to scalability. Moreover, the best solvers, ILP-based GOB-
NILP (Bartlett and Cussens 2017), and CP-based ELSA
(Trosser, de Givry, and Katsirelos 2021) also explicitly have
this set of parent sets in other parts of the model as well, in
the case of ELSA as domains of variables.

Here, we propose exploiting the fact that these domains
are structured, i.e., that each value is a set. Specifically, we
show that we can represent potential parent sets as paths on
decision trees and that using these decision trees we can an-
swer queries more efficiently than by traversing a list of do-
main values. This feature has not been exploited in BNSL
in the past and allows us to solve large instances more effi-
ciently.

CP-based BNSL

Learning a BN from a set of multivariate discrete data using
the score based method uses a decomposable scoring func-
tion (such as BIC (Schwarz 1978; Lam and Bacchus 1994)
or BDeu (Buntine 1991; Heckerman, Geiger, and Chicker-
ing 1995)) which assigns, based on the data, a score to each
potential parent set of each vertex. The BNSL problem is
the problem of finding the structure G’ which minimizes this
scoring function.

The number of candidate parent sets can in principle be
exponentially large, but it is typically kept in check. For one,
the BIC scoring function (Schwarz 1978; Lam and Bacchus
1994) guarantees that the number of candidate parent sets
grows only logarithmically with the size of the data set. Sec-
ond, there exist dedicated pruning rules (de Campos and Ji
2010; de Campos et al. 2018) which reduce the set further.
As a last resort, an upper bound can be placed on the car-
dinality of parent sets. This is necessary especially in larger
instances, where it is necessary to limit cardinality to as low
as 3 in some cases.

ELSA (Trosser, de Givry, and Katsirelos 2021) is a CP-
based solver for the BNSL, based on the CPBayes solver
(van Beek and Hoffmann 2015). In the model it uses, for
each random variable X, there exists a corresponding CSP



variable Px whose domain is the set of candidate parent sets
of X. There exists an acyclicity constraint over these which
requires that their instantiation yields an acyclic graph. Ad-
ditionally, ELSA computes lower bounds by approximately
solving a linear relaxation of an ILP which was proposed
by Bartlett and Cussens (Bartlett and Cussens 2017) for the
GOBNILP solver. That ILP is exponentially large, as it con-
tains an exponential number of so-called cluster constraints.
Hence, following GOBNILP, ELSA starts with none of the
cluster constraints in the linear relaxation and then adds only
some of those that can improve the dual bound. Finding
those is NP-hard, so ELSA uses a polynomial time algorithm
which can identify a strict subset of all improving cluster
constraints.

In both the acyclicity constraint and in discovering im-
proving cluster cuts, the most expensive queries performed
on domains are, respectively:

1. Does there exist a domain value S such that S C T for
some 1'?

2. Does there exist a domain value S with reduced cost 0
such that S C T for some 1'?

Decision Trees as Domain Store

The set of sets that are in a domain can be seen as the set
of solutions of a propositional formula, in which we have
a propositional variable for each element of the universe.
Therefore, knowledge compilation languages can be used to
represent a domain.

We use decision trees here, in particular binary decision
trees with implied literals, inspired by a similar technique in
BDDs (Lai, Liu, and Wang 2013). The main use of decision
trees is in machine learning for classification, but their use as
a data structure for representing sets of sets (or, equivalently,
a knowledge compilation language) is straightforward.

To set this in the more familiar use of decision trees for
classification, observe that we can set the features to be the
variables of the indicator function of the sets in the domain
and the classes as in-set and not-in-set.

One difference is that, in machine learning, the objective
is not only to construct models that perform well on the
training set, but that also generalize. Hence, it is not only ac-
ceptable, but also desirable to misclassify some samples in
training sets, if that means a smaller and hence more general
decision tree. In our setting, however, where we use decision
trees to model a Boolean function, we accept no error. So no
two sets that belong to different classes, i.e., one in in-set
and one in not-in-set, are allowed to both be consistent with
the same leaf node.

Subset queries To answer the queries given above, we
perform a depth first (DFS) traversal of the tree. At each
node n, we check the feature associated, which is a variable
in our case. If that is not in T, we only allow DFS to fol-
low the outgoing arc labeled with false. Otherwise, we allow
DFS to follow both outgoing arcs. If we reach a leaf labeled
with class in-set, we stop and report success. If we exhaust
the search without reaching a leaf, we report failure.

This procedure can be used to answer subset queries of
both types. For type 1, we mask away sets that have been re-
moved. For queries of the second type, we mask away those
sets whose reduced cost is greater than 0.

Summary of Experimental Results

We implemented decision trees as the domain representation
on top of ELSA and denote this solver ELSA’®. We com-
pared it against the previous version of ELSA GOBNILP
and CPBayes.

We observed that the use of decision trees has little effect,
either positive or negative, for the smaller instances, but it
makes a great difference in the larger instances. In particu-
lar, ELSA’C is the only solver that can prove optimality for
several datasets. For some datasets where ELSA was signif-
icantly worse than CPBayes, ELSA’C either closes the gap
back down or is faster than CPBayes. However, ELSAZC re-
gresses with respect to ELSA in some datasets where the
benefit of the decision trees in terms of the reduction of
the cost in answering the subset queries is comparatively re-
duced, so it is not enough to overcome other overheads.

With respect to GOBNILP, ELSA’S mostly outperforms
it, but there are some instances where neither ELSA nor
ELSAZCG can match it. It seems, however, that ELSAZC is
overall the best performer.

Despite these improvements, answering subset queries is
still the most time consuming operation performed by the
solver. Moreover, the fact remains that decision trees as a
knowledge compilation language are fairly weak in terms
of conciseness. It remains an open question whether we
can overcome the issues with ROBDDs or even DNNFs to
achieve even more significant speedups.

References

Bartlett, M.; and Cussens, J. 2017. Integer Linear Program-
ming for the Bayesian network structure learning problem.
Artificial Intelligence, 258-271.

Berg, J.; Jarvisalo, M.; and Malone, B. 2014. Learning op-
timal bounded treewidth Bayesian networks via maximum
satisfiability. In Artificial Intelligence and Statistics, 86-95.
PMLR.

Buntine, W. 1991. Theory refinement on Bayesian networks.
In Proc. of UAI, 52-60. Elsevier.

Chickering, D. M. 1995. Learning Bayesian Networks is
NP-Complete. In Proc. of Fifth Int. Workshop on Artificial
Intelligence and Statistics (AISTATS), 121-130. Key West,
Florida, USA.

de Campos, C. P;; and Ji, Q. 2010. Properties of Bayesian
Dirichlet Scores to Learn Bayesian Network Structures. In
Proc. of AAAI-10. Atlanta, Georgia, USA.

de Campos, C. P.; Scanagatta, M.; Corani, G.; and Zaffalon,
M. 2018. Entropy-based pruning for learning Bayesian net-
works using BIC. Artificial Intelligence, 260: 42-50.

Fan, X.; and Yuan, C. 2015. An Improved Lower Bound for
Bayesian Network Structure Learning. In Proc. of AAAI-15.
Austin, Texas.



Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine learning, 20(3): 197-243.

Lai, Y.; Liu, D.; and Wang, S. 2013. Reduced ordered binary
decision diagram with implied literals: A new knowledge
compilation approach. Knowledge and Information Systems,
35(3): 665-712.

Lam, W.; and Bacchus, F. 1994. Using New Data to Refine
a Bayesian Network. In Proc. of UAI, 383-390.

Schwarz, G. 1978. Estimating the dimension of a model.
The Annals of Statistics, 6(2): 461-464.

Silander, T.; and Myllymiki, P. 2006. A Simple Approach
for Finding the Globally Optimal Bayesian Network Struc-
ture. In Proc. of UAI’06. Cambridge, MA, USA.

Trosser, F.; de Givry, S.; and Katsirelos, G. 2021. Im-
proved Acyclicity Reasoning for Bayesian Network Struc-
ture Learning with Constraint Programming. In Proceedings
of IJCAI, 4250-4257.

van Beek, P.; and Hoffmann, H.-F. 2015. Machine learn-
ing of Bayesian networks using constraint programming. In
Proc. of International Conference on Principles and Prac-
tice of Constraint Programming, 429—445. Cork, Ireland.

Yuan, C.; and Malone, B. 2013. Learning Optimal Bayesian

Networks: A Shortest Path Perspective. J. of Artificial Intel-
ligence Research, 48: 23-65.



