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Abstract
In some application scopes, the data produced involve a sig-
nificant proportion of missing data. Depending on the type of
missing data, they can be ignored or imputed. However, ig-
noring missing data may lead to insufficient volume of avail-
able data to ensure good modeling, and imputation is not al-
ways desired. This work presents a Bayesian Network struc-
ture learning algorithm that can handle highly missing cate-
gorical data without performing any data imputation before
or during learning. The learning process is based on a set of
local bootstrap learnings performed on complete sub-datasets
which are then aggregated and locally optimized. This learn-
ing method presents competitive results compared to other
structure learning algorithms, whatever the type of missing
data.

1 Introduction
Bayesian Networks (BN) (Pearl 1988) are models that
describe dependencies relationships between variables (fea-
tures) in a dataset using a directed acyclic graph (DAG) and
conditional probability distributions (CPD). They are able
to consider prior knowledge and to deal with uncertainty
in the modeling, which makes them very powerful tools.
Because of their graphical component, making them more
intuitive to non-Machine Learning users, they are used in
many multidisciplinary application fields, such as health
(McLachlan et al. 2020) or social sciences (Smith et al.
2006).

In these scopes, it is not uncommon for data sets produced
to have a higher proportion of missing data than those pro-
duced by industry (involving systematic and automatic data
collection). Reasons for missing data can be manifold, such
as a failure of the data entry software, a non-legitimacy of
a question in specific situations, a data entry error, a partici-
pant dropping out of a study, or items being censored.
When the missing data are considered, they can be classified
into three categories:
• Missing Completely At Random (MCAR) data: when the

missingness is not related to the data itself but due to ran-
domness. For example, a failure of the data entry soft-
ware.

• Missing At Random (MAR) data: when the missingness
can be explained (and thus deduced) by the observed

data. For example, men not answering the question ”Are
you pregnant?” in a survey (assuming that the gender is
known).

• Missing Not At Random (MNAR) data: when the miss-
ingness has unknown causes or can be explained by un-
observed data. For example, when the lack of response to
a question on alcohol consumption depends on the partic-
ipant’s alcohol consumption, which they are not ready to
disclose.

The MCAR data can be ignored, as long as removing the
samples from the dataset is equivalent to random sampling
and does not introduce any bias in the final data set. How-
ever, in some cases the proportion of missing data is such
that removing the examples results in a decrease in the vol-
ume of data that is too large to be still modeled.
When data are MAR, the preferred approach is imputation
(single or multiple (Azur et al. 2011)) since ignoring sam-
ples with missing data would bias the final data set. Never-
theless as MAR data are hard to differentiate from MNAR
data in most of the case, data imputation may lead to the
introduction of biases, which is why some expert can be
against this type of approach (Jakobsen et al. 2017).
If data are MNAR, complete case analysis and imputation
may both lead to bias introduction in the final dataset.

The aim of this work is to provide an algorithm that can
learn BN structure when missing data are too frequent to
perform complete case analysis or when imputation is not
wanted. It is based on the combination of data clustering,
multiple local learning and graph fusion in order to exploit
all the variables available in a dataset.

2 Bayesian Networks
Definition
For the rest of this paper, all variables will be assumed to be
categorical.
A BN is the combination of a DAG, G, and a set of CPDs,
P , that encodes the joint probability distribution of a set of
random variables X = {X1, ..., XM} so that:

P (X ) = P (X1, ..., XM ) =

M∏
i=1

P (Xi | PaGXi
) (1)



where PaGXi
is the parents of the variable Xi in the DAG

G, i.e. the variables that point to Xi in the DAG. It is then
clear that the fitness of the joint probability distribution to
the data depends strongly on the fitness of the DAG.

The DAG G is composed of nodes, V , representing the
variables in X and arcs, E , representing direct dependen-
cies relations between them. Typically, if the relationship
Xi → Xj exists, then Xi and Xj are dependent. Xi is called
a parent of Xj , and Xj is called a child of Xi.
From this, it is possible to define the Markov Blanket (MB)
of a node v ∈ V , denoted MBG(v), as the smallest subset
of nodes, S ⊂ V , such that v is conditionally independent
of all other nodes given S. The subset S always contains the
parents of v, its children, and the parents of its children.
There are three different ways to represent and interpret re-
lationships between variables. Let Xi, Xj , Xk be three vari-
ables of X not independent from each other. They can be
presented as follows :

Xi → Xj → Xk =⇒ Xi ⊥⊥ Xk | Xj

Xi ← Xj → Xk =⇒ Xi ⊥⊥ Xk | Xj

Xi → Xj ← Xk =⇒ Xi ⊥/⊥ Xk | Xj

(2)

Where Xi ⊥⊥ Xk | Xj means that Xi is independent of
Xk given Xj . This same reasoning can be applied to distinct
subsets of variables.

Bayesian Networks Structure Learning
Structure learning is an NP-Hard problem (Chickering
1996), meaning that the space of possible DAGs increases
super-exponentially with the number of variables. Structure
learning algorithms are most often divided into three cate-
gories: i) constraint-based methods, ii) score-based methods
and iii) hybrid methods, which consist of a sequential use of
methods i and ii.

On the one hand, constraint-based algorithms (Margari-
tis 2003; Yaramakala and Margaritis 2005; Colombo and
Maathuis 2014) use statistical tests to link together nodes
that are not independent. These algorithms are always orga-
nized in at least two phases: i) neighborhood learning and
ii) arc orientation. In phase i, the parents and children of
each variable Xi (i.e., direct dependencies) are learned us-
ing a test of independence. For categorical variables, this test
is most often the G2 test (an asymptotic χ2 mutual infor-
mation test). Equivalently, for each pair Xi,Xj , i ̸= j, a
set SXiXj

⊂ V is searched such that Xi ⊥⊥ Xj | SXiXj
.

This phase can be simplified if the Markov Blanket of each
variable is passed to the algorithm. Phase ii then orients the
arcs found by first identifying the v-structures by analyz-
ing pairs of non-adjacent variables, then orients the rest of
the graph using graph engineering, as described in (Scutari
2015). Although very efficient on datasets with a large num-
ber of variables, they remain dependent on the choice of the
significance threshold of the statistical test (specific to the
application scope). Moreover, each test produces type-I and
type-II error rates. Finally, they require the existence of an
acyclic directed graph that satisfies the learned constraints.

On the other hand, score-based algorithms address the
structure learning problem as a heuristic search. The best-
known and most widely used algorithm is the greedy algo-
rithm Hill-Climbing (HC). It usually starts from an empty
structure and explores the space of possible DAGs using
three operations: adding, deleting or reversing an arc. At
each step, the fitness of the generated DAG to the data is
evaluated using a fitness score (BIC (Schwarz 1978), AIC
(Akaike 1974), BDe(u) (Heckerman, Geiger, and Chicker-
ing 1995), or others (Scutari 2016; Silander et al. 2018)). In
the end, the DAG that is selected is the one that maximizes
the fitness score to the data D:

argmax
G∈G

score(G,D) (3)

where G is the set of generated DAGs.
Score-based methods are not exact and very often return the
DAG resulting from a local maximum of the score function.
To avoid getting stuck in the same local maximum during
the learning process, different parameters are possible
to add such as setting up a tabu list, performing random
restarts, or disturbing the data in order to improve the
generalization and to get closer to the global maximum.
Moreover, parameterization (imaginary sample size (iss)
value, prior distribution,...) of score-based algorithms can
be tricky to set as they strongly depend on the data and the
constraints of the application scope.

Bayesian Networks Structure Learning from
Missing Data
Bayesian scores theoretically make it possible for score-
based algorithms to take missing data into account. How-
ever, this implies a redefinition of the score as a function of
both the observed and missing data (with all possible con-
figurations of missing data). In case of high proportions of
missing data this task becomes computationally infeasible
(Bodewes and Scutari 2021).

Constraint-based algorithms can handle missing data as
they perform conditional independence tests on a small sub-
set of variables at a time to handle locally complete observa-
tions (i.e. local complete cases analysis). Nevertheless, when
the proportion of missing data is too large, the number of
complete observations becomes too small and both the type-
I and type-II error rates of the conditional independence test
will increase. As a result, the graph can be only partially ori-
ented or inaccurate.
Another possibility is the ”pairwise approach” that evalu-
ates the mutual information between the variables two by
two on a subset of locally complete observations to generate
an undirected graph. This is the principle behind algorithms
like ARACNE (Margolin et al. 2006). However, because the
mutual information is symmetric, the graph cannot be ori-
ented.
It is important to note that the use of these two approaches on
missing MAR or MNAR data may lead to the introduction
of biases in the resulting DAG.

Most algorithms that handle structural learning from
(MAR) missing data involve an imputation phase before or
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Figure 1: The CBSL algorithm and its steps

during learning (Friedman 1998; Fernández, Nielsen, and
Salmerón 2010; Adel and de Campos 2017; Scanagatta et al.
2018). The most famous and used one (still today) is the
Structural EM (Friedman 1998) algorithm (SEM). It repeats
until convergence an E-step ,that completes the data from a
BN, and an M-step, that learns the BN induced by the newly
completed data. However, this algorithm is mainly intended
for structure learning in case of latent (unobserved) variables
and its performance decreases drastically beyond 20% miss-
ing data (Friedman 1997).

3 CBSL Algorithm
The algorithm described in this section is designed to be
applied on datasets from various areas such as healthcare,
which present missing data in unequal but potentially high
proportions (up to 99% for some variables). It presents an in-
teresting alternative to handle such datasets for DAG learn-
ing when analysis by global complete cases leads to an im-
portant reduction of the volume of available data and when
the imputation of the data is not desired.

The Clustered Bootstrap Structural Learning algorithm is
an algorithm for BN structural learning. It has been entirely
realized in R (R Core Team 2021) using the bnlearn package
(Scutari 2010). It allows local complete cases learning with
any type of algorithm implemented in bnlearn (score-based,
constraint-based or hybrid) and takes into account the inclu-
sion of expert priors if available. It is structured in one step
of data preparation, on step of structural priors definition and
two learning phases. They are described below and showed
in Figure 1.

Data preparation
In order to proceed to local complete cases learning, it is
necessary to cluster the dataset to create completely ob-
served sub-datasets. To ensure that each variable will be
sampled at least once, as many sub-datasets are created as
there are variables (M) in the initial dataset, with in each of
them the presence of a variable that is forced. These sub-
datasets, denoted clusters Cm,m ∈ {1, ...,M}, are the sub-
set of observed variables in cluster m. The creation of the

set of variables XCm
of the cluster Cm was done by itera-

tively adding variables with the strongest Mutual Informa-
tion with Xm as long as the number of complete samples
of the sub-dataset DCm

is larger than nmin (by default set to
100). Thus, the more complete a sample is, the more clusters
it will be present in. Similarly, the more often a variable is
observed, the more likely it is to be present in many clusters.

Priors Definition
Structural priors definition is a key step that will counteract
the introduction of biases during learning as much as possi-
ble. The more informative the expert prior, the better the fi-
nal DAG. By default, the CBSL algorithm considers that no
expert prior is available except a partial ordering of the vari-
ables. By default, this partial order separates the roots vari-
ables, the leaves variables and the intermediates variables.
This partial order can also refer, for example, to a chronol-
ogy of variables (the variables relating to a treatment will be
known before those relating to its side effects). It is provided
by a tier list (converted as blacklist) which, once provided to
the algorithm during training, will prevent certain directions
of arcs and reduce the search space of possible DAGs. This
partial order needs to be provided by the user.
This is why a second prior is artificially defined from the
data. The Castello & Siebes’ prior (CS prior) (Castelo and
Siebes 2000) provides the learning algorithm with a prob-
ability for the presence or absence of an arc between two
variables, such that −→pij +←−pij + p̂ij = 1, where −→pij is the
probability of an arc Xi → Xj ,←−pij is the probability of an
arc Xj → Xi and p̂ij is the probability of no arc between
Xi and Xj . The stated probabilities are estimated from per-
forming non-parametric bootstrap learning (100 replicates)
of an undirected graph using the ARACNE algorithm. If the
resulting probabilities are 0 or 1, they had an α argument
added (respectively subtracted) in order to preserve some
uncertainty on the arcs1. Thus −→pij = ←−pij = ←→pij/2. It is im-
portant to note that this prior is only compatible with score-
based algorithms using a Bayesian score (BDe, BDs (Scutari

1The value of this parameter is to be chosen by the user. Its
default value is 0.1.



2016)2, ...) as it replaces the conditional probability distribu-
tion of the score.
The CS prior probabilities can be replaced by expert knowl-
edge if necessary.

Phase 1: DAG Learning
There are two steps in the DAG learning phase: local learn-
ing of the arcs then selection and aggregation of the arcs.
The first step consists in a non-parametric bootstrap learn-
ing (100 replicates) of a local DAG for each of the M clus-
ters. By default, this learning is performed with the HC al-
gorithm implemented in bnlearn, parameterized with a BDs
score (with imaginary sample size (iss) set to 1), the partial
order (passed as blacklist), and the CS prior. The result pro-
vided is, for each Cm, the strength, P (−→pij + ←−pij), and the
direction, P (−→pij | −→pij +←−pij), for each arc. A first selection
is made so that only arcs with direction > 0.5 are kept.

The second step is to identify the relevant arcs that will
compose the global DAG. The achievement of this task was
based on the assertion made by Friedman in (Friedman,
Goldszmidt, and Wyner 1999), stating that when using boot-
strap learning, the prediction of a (Markov) neighborhood
of two variables was more robust than the learning of the
edges of a DAG. Thus, this step aim to recover the possible
neighborhood of each variable. For each variable, the arcs
related to the variable of interest are selected. A confidence
threshold calculated from the L1 norm (Scutari and Nagara-
jan 2013) is then applied on their probabilities. Arcs whose
probability is greater than this confidence threshold are kept
to form the DAG. The acyclicity is guaranteed thanks to a
feature of bnlearn, which, in case of cycle, will remove the
arc with the smallest strength.

Phase 2: DAG improvement
As all variables are not simultaneously observed and sample
size of each sub-dataset is limited due to clustering, part of
the arcs found during local bootstrap learning might come
from the noise induced in the data. The objective of this part
is to perform different local operations on the DAG resulting
from the previous phase to remove noisy arcs and add new
ones when necessary. Due to the presence of missing data
in the dataset, the DAG can only be analyzed locally. There-
fore, all operations detailed in the rest of this section will be
performed on a subgraph (and a sub-dataset) composed of
the variables at the endpoints of the arc and their MB. The
four improvement steps in Figure 1 will occur iteratively.

The first step compares, for each arc of the DAG, the
scores of a subgraph on a sub-dataset with and without the
arc and keeps the arc only if its presence improves the score.
The same reasoning is valid for the second step, which eval-
uates the orientation of the DAG arcs.

In order to know if arcs are missing and to identify po-
tential concerned variables, the third step will compare the
status of the DAG variables with their theoretical status in-
duced by the tier list (see Section 3) to identify “suspicious”
variables. As a reminder, by default each variable can be a
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Figure 2: Distribution of the proportions of missing data
generated for each variable in each replicate.

leaf (without children), a root (without parents) or interme-
diate (with parents and children). A variable is considered
suspicious if its status in the DAG does not correspond to its
theoretical status.
Once the suspicious variables are selected, possible arcs to
add are identified among those found during local learning
but left aside because they were not related to the variable of
interest and among the undirected arcs learned by ARACNE
during the prior definition phase. For each of these possi-
ble arcs, a local learning3 is performed in order to prevent
cycles from appearing in the graph and to minimize orien-
tation errors. The arcs of these new graphs are stored if the
subgraph maximizes the score on the sub-dataset. The inclu-
sion of each stored arc is then evaluated, in the same way as
for steps 1 and 2, in order to guarantee their correct integra-
tion in the final DAG. When adding the new arc to the final
DAG, again, acyclicity is guaranteed thanks to a bnlearn fea-
ture, which, in case of cycling, will remove the arc with the
smallest force.

4 Experiments & Results
Prior Creation
Two different types of prior knowledge have been generated
and provided to the learning algorithms: a whitelist and a
CS’ prior. The first allows the integration of ground truth
knowledge of the domain (supported by the literature), the
second allows the integration of expert knowledge while pre-
serving a reasonable uncertainty level (α). For the CS’ prior,
in addition to the experts of the application scope, the in-
formation gathered by the data scientists in charge of the
data can also be useful (identification of the mechanism of
missing data, categorization of a variable, correlations, etc.).
These knowledge will be used to guide the learning to over-
come missing data. The different priors and their use are
summarized in the table 1.

Whitelist: The whitelist forces some arcs to be present in
the graph. It allows to restrict the search space of the DAG to
converge more quickly and efficiently to the optimal DAG.

3By default the HC algorithm is used, parameterized with a
qNML score (Silander et al. 2018) and partial order passed as
blacklist



Generation of priors Use of priors
Mechanism MCAR MAR MNAR Algorithms
Missing data prop. Low High Low High Low High Complete Inter IAMB SEM CBSL
Whitelist No Yes No Yes No Yes Yes
Expert prior Yes Yes No Yes Yes
Data scientist prior No No Yes Yes Yes Yes Yes No Yes Yes

Table 1: Generation and use of priors conditionally to missing data mechanism and learning algorithm

It is important to include only arcs for which domain experts
are absolutely sure, to limit the risk of including false posi-
tives and distorting DAG search.
This type of prior was introduced only for highly missing
variables (≥50% for the MCAR and MNAR mechanisms
and ≥25% for the MAR mechanism) since such a high pro-
portion of missing data would have necessarily led the data
scientist to turn to domain experts to understand the causes
of such deficiencies. For each of these highly missing vari-
ables, one incoming or outgoing arc was drawn at random
and whitelisted.
The resulting whitelist is then provided all the learning al-
gorithms.

CS’ prior: Castello & Siebes’ prior (CS prior) consist of
a list of probabilities that each arc exists or not. These prob-
abilities are used as prior for the Bayesian score when learn-
ing the structure. CS’ priors from domain experts and from
data scientists were generated and combined. The resulting
probabilities are then provided to the SEM and CBSL learn-
ing algorithms (as inter IAMB is not compatible with this
type of prior, only the whitelist is provided). For CBSL al-
gorithm, the generated probabilities replace those computed
by the bootstrap learning with ARACNE.

Expert prior: The expert prior consists of the experts’ in-
tuition about the existence or not of certain arcs. It can be any
kind of expertise for which uncertainty remains or which is
not reported in the literature. This prior was simulated by
randomly drawing 10% of the arcs of the real graph and as-
signing them the following probabilities:

−→pij = 1
2 (1− α)

←−pij = 1
2 (1− α)

p̂ij = α

(4)

where α represents the uncertainty (by default, alpha is 0.1
for all simulations). If some of the drawn arcs are already in
the whitelist, they are kept in the CS’ prior with α and the
wrong orientation set to 0.

Data scientist prior: The purpose of this second type
of prior is to represent any additional knowledge that data
scientists could acquire from the analysis of the data be-
fore their modeling (covariances, missingness mechanism,
etc.). It was simulated by trying to recover the missing data
mechanism and considering for each variable a possible arc
(α = 0.3) with the most observed covariate when the vari-
able is missing. Since the MCAR mechanism can be identi-
fied by a test (Little 1988), this prior was generated only for

the MAR and MNAR mechanisms. Since it is impossible
to distinguish MAR from MNAR, the default assumption is
that the mechanism is MAR. Therefore, this prior may intro-
duce many false positives, especially for MNAR data.

Experiments
Experiments have been performed to compare the perfor-
mance of the CBSL algorithm to algorithms well known and
widely used, performing local learning (constraint-based al-
gorithm Inter-IAMB (Yaramakala and Margaritis 2005) as it
is known to avoid false positives in the Markov blanket de-
tection phase (Scutari 2010)), or imputation (SEM). They
are both implemented in bnlearn R package. The perfor-
mances of the three algorithms were compared to those of a
structure learning on complete data (without missing data).
Five toy datasets were chosen for the experiments. : ASIA
(8 nodes, 8 arcs)(Lauritzen and Spiegelhalter 1988), CHILD
(20 nodes, 25 arcs)(Spiegelhalter et al. 1993), ALARM (37
nodes, 46 arcs)(Beinlich et al. 1989), INSURANCE (27
nodes, 52 arcs)(Binder et al. 1997) and HAILFINDER (56
nodes, 66 arcs)(Abramson et al. 1996). For each dataset,
20 replicates of 3000 samples were randomly drawn. On
each replicates, high and low proportion of MCAR, MAR
and MNAR missing data (Fig. 2) were generated. Each of
these six combinations was learned with and without addi-
tional prior, generated as described in Section 4. Only the
results from learnings on high proportions of missing data
will be discussed in the results, as learnings on low propor-
tions leads to similar conclusions.
The blacklist encoding the partial order of the variables was
systematically provided to all algorithms for DAG learning.
The algorithm for complete learning (Complete Learning)
was parameterized with the HC algorithm and BDs score
(iss = 1). The SEM algorithm was parameterized with
the HC algorithm, BDs score (iss = 1), and maximum
likelihood estimator for the maximisation step and with the
’bayes-lw’ method (averaging likelihood weighting simula-
tions performed using all the available nodes as evidence)
for the expectation step. The inter IAMB algorithm was pa-
rameterized with α = 0.05 for statistical tests. Finally, the
CBSL algorithm was parameterized with default parameters
described in Section 3.

Results
Figures 3, 4 and 5 show the results of learnings with and
without prior knowledge on the different types of missing
data in high proportions. True Positive (TP) arcs are arcs in
the learned DAG that are in the true DAG, False Positive
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Figure 3: Results of learnings with and without prior knowledge on high proportion of MCAR data

(FP) arcs are arcs in the learned DAG that shouldn’t have
been include according to the true DAG (including arcs with
wrong orientation) and False Negative (FN) arcs are arcs not
present in the learned DAG that should have been included.
The theoretical maximums of the values for each dataset
are given below in the form (TP, FP). The FN are not given
since they have the same maximum as the TP: ASIA (8,48),
CHILD (25, 355), ALARM (46, 1286), INSURANCE (52,
650), HAINFINDER (66, 3014). The log likelihood of the
DAGs resulting from learning on each of the 20 replicates is
also recovered, in order to evaluate the fitness to the data.

Whatever the mechanism and the proportion of missing
data, Inter IAMB is nearly always the one with the most FNs
the least FPs. The large number of FNs tends to show that
the presence of missing data coupled with a limited initial
volume (3k samples) may distort the results of the statisti-
cal tests performed that prevent the algorithm from correctly
identifying the MB of each variable. Furthermore, it must
be noticed that the algorithm failed to orient the arcs of the
graph and therefore fails to produce a fully oriented graph
for 10% of the learnings.

The SEM algorithm is the algorithm most affected (posi-
tively) by the addition of prior knowledge. Nevertheless, al-
though this algorithm often seems to be the one with the
most TP (median and 3rd quartile), this comes at the cost of
many additional FPs, regardless of the mechanism of miss-

ing data. This is a direct consequence of imputation, which
introduces noise in the data, especially when the a priori
knowledge contains FPs (as explained in Section 4). Here
again, the algorithm sometimes failed to produce a DAG due
to an inability to generate weights needed for data imputa-
tion (for 1% of the learnings).

Unlike the two previous algorithms, CBSL allows a good
compromise between TP and FP. It often presents less spread
FPs and with a lower median than SEM without sacrificing
too much TPs. Figure 6 The figure displays the average num-
ber of changes made by phase 2 of the algorithm. For exam-
ple, when learning with a prior knowledge on MAR missing
data for the HAILFINDER dataset, this phase added an av-
erage of 13 TPs to the DAG (respectively removed 13 FNs),
without introducing any new FPs. It clearly shows the im-
pact of phase 2 on the decrease of the number of FPs and
FNs and on the increase of the number of TPs in most of the
cases. It is thanks to this that the algorithm seems to be more
robust to noise (introduced in the data by bootstrapping and
inexact prior knowledge) than SEM. Figure 7 displays the
average number of samples used for each of the two learning
phases of the CBSL algorithm. It shows that the algorithm
almost always uses all the samples in phase 2, explaining
the performance gain offered by this phase. Figure 8 also
shows that CBSL resulting DAGs has a better log likelihood
than Inter IAMB and very close to SEM, without doing any
imputation.
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Figure 4: Results of learnings with and without prior knowledge on high proportion of MAR data

5 Discussion
The first phase of CBSL allows to limit the risks of FP linked
to a sampling bias resulting from both the missing data and
the clustering of the variables performed beforehand. This
is done by means of two assets: bootstrap learning and arc
selection.
The first one allows to artificially introduce diversity in
the data in order to maximize the chances of finding TP
arcs. Nevertheless, the efficiency of the bootstrap depends
strongly on the representativity of the initial samples. In
some cases (in particular for MAR data) this set of samples
may be too small and unrepresentative. In these cases, the
sampling bias may be too strong to be compensated by the
bootstrap. Conversely, note that a variable with few miss-
ing data will tend to be over-represented by the clusters (i.e.
will be present in most clusters), thus increasing the risk of
noisy arcs related to this variable. Thus, the way the sub-
datasets are created has a big impact on the results of phase
1. Future investigations may implement other methods for
creating sub-datasets and study their impact on learning.
The second one tries to identify the significant arcs resulting
from the learning. Identifying significant arcs is a complex
problem. The objective is to find a confidence threshold al-
lowing to separate arcs coming from the noise contained in
the data from those representing the true relations between
the variables. This confidence threshold is an unknown func-
tion that depends on both the data and the structure learning

algorithm. Nevertheless, the problem is even more complex
here, as all the variables are never simultaneously observed,
and their sample size is limited, which can increase the risk
of false positive arcs. For example, the case where three vari-
ables Xi, Xj , Xk are connected as Xi → Xj → Xk could
appear as Xi → Xk with high probability if Xj does not be-
long to the same cluster; since Xi ⊥⊥ Xk | Xj , they become
dependent when Xj is not observed. As a result, it becomes
difficult to distinguish good from bad arcs based on their
strength, since each cluster does not encode the same set of
dependencies between variables. The selection of a confi-
dence neighborhood, as performed by CBSL, instead of the
set of significant arcs allows to limit the introduction of FP
in this kind of situations.
One way to improve the results of this first phase of the algo-
rithm would be to improve the probabilities of appearance of
each arc so that they are easier to select later. In other words,
the DAGs learned by each cluster should be made closer
to the true DAG. Opting for a hybrid algorithm, providing
a non-empty starting structure to the algorithm (established
from prior knowledge), or performing random restarts dur-
ing learning to avoid getting stuck on a local maximum of
the score function, are all possible solutions, to be preferred
according to the constraints of the scope.

The second phase of CBSL depends very strongly on the
chosen score. Although only one score has been chosen here
for all the steps of the phase, it is possible to specify a dif-
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Figure 5: Results of learnings with and without prior knowledge on high proportion of MNAR data

ferent score each time, depending on the constraints to be
applied on the DAG. For example, using the BIC score for
the last step will further penalize new arcs to be added to the
DAG, thus decreasing the risk of FP. This example could be
indicated for medical domains.
Also, the last step (adding arcs) relies only on the previ-
ous step of identifying suspicious variables. The latter has
been designed to work in the case where no prior knowledge
would be available for the studied data. Nevertheless, when
expertise is available, it would be good to be able to take it
into account during this step. It could be possible, for exam-
ple, to ask the user to identify suspicious variables based on
the DAG resulting from the orientation checking step.

Also, since CBSL is based on a set of local learning, the
learning of the DAG is not unified. As a consequence, it is
possible that a succession of local improvements do not ben-
efit to a global improvement of the DAG, as it seems to be
shown by the learning on the HAILFINDER dataset with
MCAR data (figures 3 and 6). This could be partly explained
by figure 7. Indeed, the efficiency of phase 2 seems to de-
pend on its ratio in number of samples to phase 1. The higher
the ratio, the more the phase 2 enriches the DAG. Here, the
ratio was not high enough for phase 2 to properly enrich the
DAG.

Moreover, the analysis of data missingness mechanisms
before learning can act on the data clustering method in ad-
dition to provide as prior knowledge, in order to limit the

sampling bias. This hypothesis will be the subject of a fu-
ture work.

6 Conclusion
It can be deduced from Figures 3 to 5 that Inter IAMB often
has the best Positive Predictive Value (PPV). In situations
where the quality of the arcs discovered is preferred to the
quantity, it is a good choice as long as that the volume of
available data is sufficient to not distort the tests.

In the same way, SEM has often a lower PPV because the
imputation induces many FPs. In situations where the quan-
tity of arcs discovered is more important than the quality, it
is a legitimate choice as long as there are enough knowledge
priors to guide imputation process.

CBSL offers an interesting trade-off since it learns DAGs
with a log likelihood better than Inter IAMB and very close
to SEM, without performing any imputation. It allows to
perform structure learning even when the prior knowledge
is limited. The clustered bootstrap learning phase performed
by CBSL allows to limit the effect of the sampling bias, and
its local improvement phase allows to reduce efficiently the
FPs. These properties make it more robust to noisy (inaccu-
rate) prior knowledge and its results are less dependent on
the mechanism of missing data. Therefore CBSL is a rel-
evant addition to the existing Bayesian Networks structure
learning dataset with missing values.
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