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Abstract

In this study, we focus on mixed data which are either ob-
servations of univariate random variables which can be quan-
titative or qualitative, or observations of multivariate random
variables such that each variable can include both quantitative
and qualitative components. We first propose a novel method,
called CMIh, to estimate conditional mutual information tak-
ing advantages of the previously proposed approaches for
qualitative and quantitative data. We then introduce a new
local permutation test, called LocAT for local adaptive test,
which is well adapted to mixed data. Our experiments il-
lustrate the good behaviour of CMIh and LocAT, and show
their respective abilities to accurately estimate conditional
mutual information and to detect conditional (in)dependence
for mixed data.

Introduction
Measuring the (in)dependence between random variables
from data when the underlying joint distribution is un-
known plays a key role in several settings (Spirtes et al.
2000; Whittaker 2009; Vinh, Chan, and Bailey 2014). Many
dependence measures have been introduced in the liter-
ature to quantify the dependence between random vari-
ables, as Mutual Information (MI) (Thomas and Joy 2006),
distance correlation (Székely, Rizzo, and Bakirov 2007),
Hilbert–Schmidt Independence Criterion (HSIC) (Gretton
et al. 2005a), COnstrained COvariance (COCO) (Gretton
et al. 2005b) or copula-based approaches (Póczos, Ghahra-
mani, and Schneider 2012). We focus in this work on (con-
ditional) mutual information, which has been successfully
used in various contexts and has shown good practical per-
formance in terms of the statistical power of the associated
independence tests (Berrett and Samworth 2019), and con-
sider both quantitative and qualitative variables.

The conditional mutual information (Wyner 1978) be-
tween two quantitative random variables X and Y condi-
tionally to a quantitative random variable Z is given by:

I(X;Y |Z) =
∫∫∫

PXY Z(x, y, z) log

(
PXY |Z(x, y|z)

PX|Z(x|z)PY |Z(y|z)

)
dxdydz, (1)

where PXY Z is the joint density of (X,Y, Z) and PXY |Z
(respectively PX|Z and PY |Z) is the density of (X,Y ) (re-

spectivelyX and Y ) givenZ. Note that Equation (1) also ap-
plies to qualitative variables by replacing integrals by sums
and densities by mass functions. It characterizes conditional
independence in the sense that I(X;Y |Z) = 0 if and only
if X and Y are independent conditionally to Z.

Estimating conditional mutual information for purely
qualitative or purely quantitative random variables is a well-
studied problem (Frenzel and Pompe 2007; Vejmelka and
Paluš 2008). The case of mixed datasets comprising both
quantitative and qualitative variables is however less stud-
ied even though mixed data are ubiquitous. The aim of this
paper is to present a new statistical method to detect condi-
tional (in)dependence for mixed data.

For clarity, we summarize our contributions as follows:

• We propose a novel method, called CMIh, to estimate
conditional mutual information taking advantages of the
previously proposed approaches for qualitative and quan-
titative data.

• We introduce a new local permutation test, called LocAT
for local adaptive test, which is well adapted to mixed
data.

• We demonstrate the good behaviour of CMIh and LocAT
on both synthetic and real data sets, and show their re-
spective abilities to accurately estimate conditional mu-
tual information and to detect conditional (in)dependence
for mixed data.

Related work
We review here related work on (conditional) mutual infor-
mation estimators as well as on conditional independence
testing.

Conditional mutual information
A standard approach to estimate (conditional) mutual infor-
mation from mixed data is to discretize the data and to ap-
proximate the distribution of the random variables by a his-
togram model defined on a set of intervals called bins (Scott
2015). To efficiently generate adaptive histograms model
from data, (Cabeli et al. 2020) and (Marx, Yang, and van
Leeuwen 2021) transform the problem into a model selec-
tion problem, using the minimum description length (MDL)
principle. These approaches are computational costly when
the dimensions increase.



To estimate entropy, two main families of approaches
have been proposed. The first one is based on kernel-density
estimates (Beirlant et al. 1997) and applies to quantitative
data, whereas the second one is based on k-nearest neigh-
bours and applies to both qualitative and quantitative data.
The second one is preferred as it does not require extensive
tuning of kernel bandwidths.

Using nearest neighbours of observations to estimate the
entropy dates back to (Kozachenko and Leonenko 1987),
which was then generalized to a k-nearest neighbour (kNN)
approach by (Singh et al. 2003). Later, (Kraskov, Stögbauer,
and Grassberger 2004) proposed an estimator for mutual
information that goes beyond the sum of entropy estima-
tors. This latter work was then extended to conditional mu-
tual information in (Frenzel and Pompe 2007). The resulting
model, called FP, however only deals with quantitative data.

Based on graph divergence measure (Rahimzamani et al.
2018) extended the estimator proposed in (Gao et al. 2017)
to conditional mutual information, leading to a method
called RAVK. Even more recently, (Mesner and Shalizi
2020) extended FP (Frenzel and Pompe 2007) to the mixed
data case by introducing a new distance for non-quantitative
variables which is either 0 for two identical points or 1 for
points with different values. We refer to this method as MS.
However, the choice of the qualitative and quantitative dis-
tances is a crucial point in MS (Ahmad and Khan 2019).

We also want to mention the proposal made by (Mukher-
jee, Asnani, and Kannan 2020) of a two-stage estimator
based on generative models and classifiers as well as the re-
finement introduced in (Mondal et al. 2020) and based on
a neural network that integrates the two stages into a sin-
gle training process. It is however not clear how to adapt to
mixed data these methods primarily developed for quantita-
tive data.

Conditional independence tests
To decide whether the estimated conditional mutual in-
formation value is small enough to conclude on the
(in)dependence of two variables X and Y conditionally to a
third variable Z in a finite sample regime, one usually relies
on statistical independence tests. The null and the alternative
hypotheses are respectively defined by

H0 : X ⊥⊥ Y |Z and H1 : X ⊥̸⊥ Y |Z,

where ⊥⊥ means independent of and⊥̸⊥ means not indepen-
dent of.

Kernel-based tests are known for their capability to deal
with nonlinearity and high dimensions. One representative
of this test category is the kernel conditional independence
test (KCIT) proposed by (Zhang et al. 2011). Then, (Strobl,
Zhang, and Visweswaran 2019) reduced its computational
complexity. (Doran et al. 2014) also proposed a kernel con-
ditional independence permutation test. However, kernel-
based tests need to carefully adjust bandwidth parameters
that characterise the length scales in the different subspaces
of X,Y, Z and can only be implemented on purely quanti-
tative data. (Tsagris et al. 2018) employed likelihood-ratio
tests based on regression models to devise conditional inde-

pendence tests for mixed data; however, in their approach,
one needs to postulate a regression model.

More recently, (Shah and Peters 2020) proposed the gen-
eralised covariance measure (GCM) test. For univariate X
and Y , instead of testing for independence between the
residuals from regressing X and Y on Z, the GCM tests
for vanishing correlations. How to extend this approach to
mixed data is however not clear. (Tsagris et al. 2018) em-
ployed likelihood-ratio tests based on regression models to
devise conditional independence tests for mixed data; how-
ever, in their approach one needs to postulate a regression
model.

Permutation tests (Berry, Johnston, and Mielke 2018) are
popular when one wants to avoid assumptions on the data
distribution. For testing the independence of X and Y con-
ditionally to Z, permutation tests randomly permute all val-
ues in X . If this destroys the potential dependence between
X and Y , as desired, this also destroys the one between X
and Z, which is not desirable. In order to preserve the de-
pendence between X and Z, (Runge 2018) proposed a local
permutation test in which permutations within X are done
within similar values of Z. We extend in this paper this test,
designed for quantitative data, to the mixed data case.

Hybrid conditional mutual information
estimation for mixed data

The two most popular approaches to estimate conditional
mutual information are based on the k-nearest neighbour
method (Kraskov, Stögbauer, and Grassberger 2004; Frenzel
and Pompe 2007), which has been mostly used on quantita-
tive variables, or on histograms (Cabeli et al. 2020; Marx,
Yang, and van Leeuwen 2021), particularly adapted to qual-
itative variables. We show in this section how these two ap-
proaches can be combined to derive an estimator for mixed
data.

Let us consider three mixed random vectors X , Y and
Z, where any of their components can be either qualitative
or quantitative. Let us denote by Xt (respectively Y t, Zt)
the sub-vector of X (respectively Y , Z) composed by the
quantitative components. Similarly, we denote by Xℓ (re-
spectively Y ℓ, Zℓ)the sub-vector of qualitative components
of X (respectively Y , Z). Then, from the permutation in-
variance property of Shannon entropy, the conditional mu-
tual information can be written as:

I(X;Y |Z) =H(X,Z ) +H(Y , Z )−H(X,Y , Z )−H(Z )

=H(Xt, Xℓ, Zt, Zℓ) +H(Y t, Y ℓ, Zt, Zℓ)

−H(Xt, Xℓ, Y t, Y ℓ, Zt, Zℓ)−H(Zt, Zℓ).

Now, from the property H(U, V ) = H(U) + H(V |U),
which is valid for any couple of random variables (U, V ),
one gets:

I(X;Y |Z) =H(Xt, Zt|Xℓ, Zℓ) +H(Y t, Zt|Y ℓ, Zℓ)

−H(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ)−H(Zt|Zℓ)

+H(Xℓ, Zℓ) +H(Y ℓ, Zℓ)−H(Xℓ, Y ℓ, Zℓ)

−H(Zℓ). (2)



Note that here the conditioning is only expressed with re-
spect to qualitative components, which leads to a simpler
estimation than the one obtained by conditioning with quan-
titative variables. We now detail how the different terms in
the above expression are estimated.

Proposed hybrid estimator
Let us now consider an independently and identically
distributed sample of size n denoted (Xi, Yi, Zi)i=1,...,n.
We estimate the qualitative entropy terms of Equation
(2), namely H(Xℓ, Zℓ), H(Y ℓ, Zℓ), H(Xℓ, Y ℓ, Zℓ) and
H(Zℓ), using histograms in which bins are defined by the
Cartesian product of qualitative values. We provide here the
estimation of H(Xℓ, Zℓ), the other terms are estimated in
the same way. The theoretical entropy is expressed as:

H(Xℓ, Zℓ) = −E
[
logPXℓ,Zℓ(Xℓ, Zℓ)

]
= −

∑
xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

PXℓ,Zℓ(xℓ, zℓ) log
(
PXℓ,Zℓ(xℓ, zℓ)

)
,

where Ω(·) corresponds to the probability space of a given
random variable and PXℓ,Zℓ is the probability distribution
of (Xℓ, Zℓ). The probability distribution of qualitative vari-
ables can be directly estimated via their empirical versions:

P̂Xℓ,Zℓ(xℓ, zℓ) =
1

n

n∑
i=1

1{(Xℓ
i ,Z

ℓ
i )=(xℓ,zℓ)}, (3)

with 1{·} is the indicator function. The resulting plug-in es-
timator is then given by

Ĥ(Xℓ, Zℓ) = −
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P̂Xℓ,Zℓ(xℓ, zℓ) log
(
P̂Xℓ,Zℓ(xℓ, zℓ)

)
.

(4)
Let us now turn to the conditional entropies of Equation

(2) for quantitative variables conditioned on qualitative vari-
ables and let us consider the term H(Xt, Zt|Xℓ, Zℓ). By
marginalizing on (Xℓ, Zℓ) one obtains:

H(Xt, Zt|Xℓ, Zℓ) =
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

H(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ)

PXℓ,Zℓ(xℓ, zℓ). (5)

As before, the probabilities involved in Equation (5) are es-
timated by their empirical versions. The estimation of the
conditional entropies H(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ) is
performed using the classical nearest neighbour estimator
(Singh et al. 2003) with the constraint that (Xℓ, Zℓ) =
(xℓ, zℓ): the estimation set consists of the sample points such
that (Xℓ, Zℓ) = (xℓ, zℓ). The resulting estimator is given
by:

Ĥ(Xt, Zt|Xℓ = xℓ, Zℓ = zℓ) =ψ(nxz)− ψ(kxz) + log (vdxz
)

+
dxz
nxz

nxz∑
i=1

log ξxz(i),

(6)

where ψ is the digamma function, nxz is the size of the
subsample space for which (Xℓ

i , Z
ℓ
i ) = (xℓ, zℓ), ξxz(i) is

twice the distance of the ith subsample point to its kxz near-
est neighbour, and kxz is the number of nearest neighbours
retained. In the sequel, we set kxz to max(⌊nxz/10⌋, 1),
with ⌊·⌋ the floor function, following (Runge 2018) which
showed that this value behaves well in practice. As orig-
inally proposed in (Kraskov, Stögbauer, and Grassberger
2004) and adopted in subsequent studies, we rely on
the ℓ∞-distance which is associated with the maximum
norm: for a vector w = (w1, . . . , wm) in Rm, ∥w∥∞ =
max(|w1|, . . . , |wm|). Finally, dxz is the dimension of the
vector (Xt, Zt) and vdxz

is the volume of the unit ball for
the distance metric associated with the maximum norm in
the joint space associated with Xt and Zt. The other en-
tropy terms are estimated in the same way, the associated
estimators being denoted by Ĥ(Zt|Zℓ), Ĥ(Y t, Zt|Y ℓ, Zℓ)

and Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ).
The conditional mutual information estimator for mixed

data, which we will refer to as CMIh, finally amounts to:

Î(X;Y |Z) = Ĥ(Xt, Zt|Xℓ, Zℓ) + Ĥ(Y t, Zt|Y ℓ, Zℓ)

− Ĥ(Xt, Y t, Zt|Xℓ, Y ℓ, Zℓ)− Ĥ(Zt|Zℓ)

+ Ĥ(Xℓ, Zℓ) + Ĥ(Y ℓ, Zℓ)− Ĥ(Xℓ, Y ℓ, Zℓ)

− Ĥ(Zℓ), (7)
where the different terms are obtained through Equations
(3), (4), (5) and (6). Notice that all the volume-type terms,
as for the log(vdxz

) term in Equation (6), are canceled out in
Equation (7). Indeed, it is well known that the volume of the
unit ball in Rp with respect to the maximum norm is 2p and
this leads to the following plain equation:

log(vdxyz )− log(vdxz )− log(vdyz ) + log(vdz ) = log

(
2dxyz2dz

2dxz2dyz

)
= log

(
2dx+dy+dz2dz

2dx+dy2dy+dz

)
= 0.

Remarks. It is worth mentioning that our estimation of the
entropy of the quantitative part is slightly different from the
one usually used. In our estimation, the choice of the num-
ber of nearest neighbours is done independently for each en-
tropy term and only with respect to the corresponding sub-
sample size. This methodological choice yields more accu-
rate estimators. Another important point is that the near-
est neighbours are always computed on quantitative com-
ponents as the qualitative components serve only as condi-
tioning in Eq. 7 or are involved in entropy terms estimated
through Eq. 4. Because of that, we can dispense with defin-
ing a distance on qualitative components, which is tricky as
illustrated in the experimental subsection that follows.

Consistency. Interestingly, the above hybrid estimator is
asymptotically unbiased and consistent, as shown below.
Theorem 0.1. Let (X,Y, Z) be a qualitative-quantitative
mixed random vector. The estimator Î(X;Y |Z) defined in
Equation (7) is consistent. Meaning that, for all ε > 0

lim
n→∞

P (|Î(X;Y |Z)− I(X;Y |Z)| > ε) = 0.



In addition, Î(X;Y |Z) is asymptotically unbiased, that is

lim
n→∞

E[Î(X;Y |Z)− I(X;Y |Z)] = 0.

Proof. It is well known that all linear combination of consis-
tent estimators is consistent. This directly stems from Slut-
sky’s theorem (Manoukian 2022). It remains to show the
consistency of each term in the right-hand side of Equation
(7). Histogram-based estimators Ĥ(Xℓ, Zℓ), Ĥ(Y ℓ, Zℓ),
Ĥ(Xℓ, Y ℓ, Zℓ) and Ĥ(Zℓ) are consistent according to (An-
tos and Kontoyiannis 2001). By analogy, we only show the
consistency of the estimator Ĥ(Xt, Zt|Xℓ, Zℓ), the same
results apply to the remaining estimators. Let ε > 0, we
write

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε)

=
∑

xℓ∈Ω(Xℓ)

zℓ∈Ω(Zℓ)

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε

|Xℓ = xℓ, Zℓ = zℓ)× P (Xℓ = xℓ, Zℓ = zℓ).

Now, conditionally to given values of Xℓ and Zℓ, the esti-
mator Ĥ(Xt, Zt|Xℓ, Zℓ) is the traditional k-nearest neigh-
bors built using the maximum-norm distance. This estimator
is shown to be consistent, the reader can refer to (Vollmer,
Rutter, and Böhm 2018) for more details. In other words,

lim
n→∞

P (|Ĥ(Xt, Zt|Xℓ, Zℓ)−H(Xt, Zt|Xℓ, Zℓ)| > ε

|Xℓ = xℓ, Zℓ = zℓ) = 0.

This concludes the proof of consistency. Moreover, knowing
that the histogram and k-nearest neighbors estimators are
asymptotically unbiased, it is plain that our estimator also
has this property.

Experimental illustration
We compare in this section our estimator, CMIh, with
several estimators mentioned before, namely FP (Frenzel
and Pompe 2007), MS (Mesner and Shalizi 2020), RAVK
(Rahimzamani et al. 2018), and LH (Marx, Yang, and van
Leeuwen 2021). FP, MS and RAVK are methods based on
the k-nearest neighbour approach. As for CMIh, the hyper-
parameter k for these methods is set to the maximum value
of ⌊n/10⌋ and 1, where n is the number of sampling points.
To be consistent, we use for all three methods the widely
used (0−Dℓ) distance for the qualitative components: this
distance is 0 for two equal qualitative values and Dℓ other-
wise. In our experiments, Dℓ is set to 1, following (Mesner
and Shalizi 2020). Laslty, for FP, which was designed for
quantitative data, we set the minimum value of nFP,W,i to 1
to avoid nFP,W,i = 0, which is an invalid value for the esti-
mator. Moreover, LH is a histogram method based on MDL
(Marx, Yang, and van Leeuwen 2021). We use the default
values for the hyper-parameters of this method: the maxi-
mum number of iterations, imax, is set to 5, the threshold to
detect qualitative points is also set to 5, the number of ini-
tial bins in quantitative component,Kinit, is set to 20 log(n)

and the maximum number of bins, Kmax, is set to 5 log(n)
(all entropies are computed in natural logarithm).

To assess the behaviour of the above methods, we
first consider the mutual information with no conditioning
(I(X;Y )), then with a conditioning variable which is in-
dependent of the process so that I(X;Y |Z) = I(X;Y ),
and finally with a conditioning variable which makes the
two others independent, such that I(X;Y |Z) = 0. We il-
lustrate these three cases by either considering thatX and Y
are both quantitative or mixed, in which case they can have
either balanced or unbalanced qualitative classes. Lastly, fol-
lowing (Marx, Yang, and van Leeuwen 2021; Mesner and
Shalizi 2020), the conditioning variable Z is always qualita-
tive.

Each (conditional) mutual information is computable the-
oretically so that one can measure the mean squared error
(MSE) between the estimated value and the ground truth,
which will be our evaluation measure. For each of the above
experiments, we sample data with sample size n varying
from 500 to 2000 and generate 100 data sets per sample size
to compute statistics. More precisely, we use the following
experimental settings, the first three ones being taken from
(Marx, Yang, and van Leeuwen 2021; Gao et al. 2017; Mes-
ner and Shalizi 2020). The last four ones shed additional
light on the different methods. Note that, as we reuse here
the settings defined in (Marx, Yang, and van Leeuwen 2021;
Gao et al. 2017; Mesner and Shalizi 2020), qualitative vari-
ables are generated either from a uniform distribution on a
discrete set, a binomial distribution or a Poisson distribution,
this latter case being an exception to our definition of what
is a qualitative variable. We do not want to argue here on
whether the Poisson variable should be considered quantita-
tive or qualitative and simply reproduce here a setting used
in previous studies for comparison purposes.

• MI quantitative.
(
X
Y

)
∼ N

((
0
0

)
,

(
1 0.6
0.6 1

))
with

I(X;Y ) = − log(1− 0.62)/2.
• MI mixed. X ∼ U({0, . . . , 4}) and Y |X = x ∼
U([x, x+ 2]), we get I(X;Y ) = log(5)− 4 log(2)/5;

• MI mixed imbalanced. X ∼ Exp(1) and Y |X = x ∼
0.15δ0 + 0.85Pois(x). The ground truth is I(X;Y ) =
0.85(2 log 2− γ −

∑∞
k=1 log k2

−k) ≈ 0.256, where γ is
the Euler-Mascheroni constant.

• CMI quantitative, CMI mixed and CMI mixed imbal-
anced. We use the previous setting and add and indepen-
dent qualitative random variable Z ∼ Bi(3, 0.5).

• CMI quantitative ⊥⊥. Z ∼ Bi(9, 0.5), X|Z = z ∼
N (z, 1) and Y |Z = z ∼ N (z, 1), the ground truth is
then I(X;Y |Z) = 0.

• CMI mixed ⊥⊥. Z ∼ U({0, . . . , 4}), X|Z = z ∼
U([z, z + 2]) and Y |Z = z ∼ Bi(z, 0.5), the ground
truth is then I(X;Y |Z) = 0.

• CMI mixed imbalanced ⊥⊥. X ∼ Exp(10), Z|X = x ∼
Pois(x) and Y |Z = z ∼ Bi(z+5, 0.5), the ground truth
is I(X;Y |Z) = 0.

Figure 1 displays the mean squared error (MSE) of the
different methods in the different settings on a log-scale. As
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Figure 1: Synthetic data with known ground truth. MSE (on a log-scale) of each method with respect to the sample size (in
abscissa) over the nine settings retained.

one can note, FP performs well in the purely quantitative
case with no conditioning but is however not competitive
in the mixed data case. MS and RAVK are close to each
other and, not surprisingly, they have similar performance
in most cases. MS however has a main drawback as it gives
the value 0, or close to 0, to the estimator in some particular
cases. Indeed, as noted by (Mesner and Shalizi 2020), if, for
all points i, the k-nearest neighbour is always determined
by Z, then, regardless of the relationship between X , Y and
Z, kMS,i = nMS,XZ,i = nMS,Y Z,i = nMS,Z,i and the
estimator equals to 0.

In addition, if one and only one of the variables X ,Y is
quantitative and the others are qualitative, e.g. X is quan-
titative, Y and Z are qualitative (it is the same result that
Y is quantitative and X and Z are qualitative) and the k-
nearest-neighbour distance of a point i, ρk,i/2, is such that
ρk,i/2 ≥ Dℓ where Dℓ ∈ N is the distance between differ-

ent values of qualitative variables, then one has:

nMS,Y Z,i = nMS,Z,i = n and kMS,XY Z,i = nMS,XZ,i.

The first equality directly derives from the fact that one
needs to consider points outside the qualitative class of point
i (as ρk,i/2 ≥ Dℓ) and that all points outside this class
are at the same distance (Dℓ). By definition, kMS,XY Z,i ≤
nMS,XZ,i; furthermore, nMS,XZ,i ≤ kMS,XY Z,i as a
neighbour of i in XZ with distance ≥ Dℓ is a neighbour
of i in XY Z as Y cannot lead to a higher distance, which
explains the second equality.

If a majority of points satisfy the above condition
(ρk,i/2 ≥ Dℓ), then MS will yield an estimator close to
0, regardless of the relation between the different variables.
This is exactly what is happening in the mixed and mixed
imbalance cases as the number of nearest points considered,
at least 50, can be larger than the number of points in a given



qualitative class. In such cases, MS will tend to provide es-
timators close to 0, which is the desired behaviour in the
bottom-middle and bottom-right plots of Figure 1, but not in
the top-middle, top-right, middle-middle and middle-right
plots (in these latter cases, the ground truth is not 0 which
explains the relatively large MSE value of MS and RAVK).
Our proposed estimator does not suffer from this drawback
as we do not directly compare two different types of dis-
tances, one for quantitative and one for qualitative data.

Comparing LH and CMIh, one can see that, overall, these
two methods are more robust than the other ones. The first
and second lines of Figure 1 show that the additional inde-
pendent qualitative variables Z does not have a large impact
on the accuracy of the two estimators. The comparison of
the second and third lines of Figure 1 furthermore suggests
that, if the relationship between variables changes, the two
estimators still have a stable performance.

Sensitivity to dimensionality We conclude this comparison
by testing how sensitive the different methods are to dimen-
sionality. To do so, we first increase the dimensionality of
the conditioning variable Z from 1 to 4 in a setting where
X and Y are dependent and independent of Z (we refer
to this setting as M-CMI for multidimensional conditional
mutual information): X ∼ U({0, . . . , 4}), Y |X = x ∼
U([x, x+2]), Zr ∼ Bi(3, 0.5), r ∈ {0, ..., 4}. The ground
truth in this case is I(X;Y |Z1, . . . , Z4) = I(X;Y ) =
log(5)− 4 log(2)/5.

The results of this first experiment, based on 100 samples
of size 2, 000 for the different components of Z (from 0 to
4), are displayed in Figure 2 (left). As one can observe, our
method achieves an MSE close to 0.001 even though the di-
mension increases to 4. LH has a comparable accuracy for
small dimensions but deviates from the true value for higher
dimensions. For MS and RAVK, as mentioned in (Mesner
and Shalizi 2020), whenX and Y have fixed-dimension, the
higher the dimension of Z, the greater the probability that
the estimator will give a zero value. This can explain why
for dimensions above 1, the MSE remains almost constant
for these two methods. Lastly, FP performs poorly when in-
creasing the dimension of the conditioning set.

It is also interesting to look at the computation time of
each method on the above data, given in Table 1. One can
note that our method is faster than the other ones and re-
mains stable when the dimension of Z increases.

We then focus on the multivariate version of (uncondi-
tional) mutual information for mixed data based using the
following generative process (this setting is referred to as
M-MI for multidimensional mutual information):

(
X1

Y1

)
∼ N

((
0
0

)
,

(
1 0.6
0.6 1

))
, X2 ∼ U({0, . . . , 4}),

Y2|X2 = x2 ∼ U([x2, x2 + 2]), X3 ∼ Exp(1) and Y3|X3

= x3 ∼ 0.15δ0 + 0.85Pois(x3). The ground truth in this
case is I(X1, X2, X3;Y1, Y2, Y3) ≈ 1.534.

Figure 2 (middle) displays the results obtained by the dif-
ferent methods but LH, computationally too complex to be

used on datasets of a reasonable size, when the number of
observations increases from 500 to 2, 000. As one can note,
CMIh is the only method yielding an accurate estimate of
the mutual information on this dataset. Both RAVK and MS
suffer again from the fact that they yield estimates close to
0, which is problematic on this data. We give below another
setting in which this behaviour is interesting; it remains nev-
ertheless artificial.

Lastly, we consider the case where the two variables of in-
terest are conditionally independent (we refer to this case as
M-ICMI for multidimensional independent conditional mu-
tual information). The generative process we used is:

Z1 ∼ U({0, . . . , 4}), Z2 ∼ Bi(3, 0.5), Z3 ∼ Exp(1),

Z4 ∼ Exp(10), X1, X2|(Z3 = z3, Z4 = z4) ∼

N
((

z3
z4

)
,

(
1 0
0 1

))
, X3|(Z1 = z1, Z2 = z2)

∼ Bi(z1 + z2, 0.5), Y |(Z1 = z1, Z2 = z2) ∼ Bi(z1 + z2, 0.5).

The ground truth in this case is
I(X1, . . . , X3;Y |Z1, . . . , Z4) = 0.

Figure 2 (right) displays the results obtained on all meth-
ods but LH. As for the univariate case, both RAVK and MS
obtain very good results here but this is due to their patho-
logical behaviour discussed above. CMIh yields a reason-
able estimate (with an MSE below 0.1) when the number of
observations exceeds 1, 250. FP fails here to provide a rea-
sonable estimate.

Overall, CMIh, which can be seen as a trade-off between
k-nearest neighbour and histogram methods, performs well,
both in terms of the accuracy of the estimator and in terms of
the time needed to compute this estimator. Among the pure
k-nearest neighbour methods, MS, despite its limitations, re-
mains the best one overall in our experiments in terms of ac-
curacy. Its time complexity is similar to the ones of the other
methods of the same class. The pure histogram method LH
performs well in terms of accuracy of the estimator, but its
computation time is prohibitive. Two methods thus stand out
from our analysis, namely CMIh and MS.

Testing conditional independence
Once an estimator for mutual information has been com-
puted, it is important to assess to which extent the obtained
value is sufficiently different from or sufficiently close to 0
so as to conclude on the dependence or independence of the
involved variables. To do so, one usually relies on statistical
tests, among which permutation tests are widely adopted as
they do not require any modelling assumption (Berry, John-
ston, and Mielke 2018). We also focus on such tests here
which emulate the behaviour of the estimator under the null
hypothesis (corresponding to independence) by permuting
values of variables. Recently, (Runge 2018) showed that, for
conditional tests and purely quantitative data, local permuta-
tions that break any possible dependence between X and Y
while preserving the dependence between X and Z and be-
tween Y and Z are to be preferred over global permutations.
Our contribution here is to extend this method to mixed data.
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Figure 2: Sensitivity to dimensionality Left: MSE (on a log-scale) of each method for the multidimensional conditional mutual
information (M-CMI) when increasing the dimension (x-axis) of the conditional variable from 0 to 4; the sample size is fixed
to 2,000. Middle: MSE (on a log-scale) of each method but LH for the multidimensional mutual information (M-MI) when in-
creasing the number of observations. Right: MSE (on a log-scale) of each method but LH for the multidimensional independent
conditional mutual information (M-ICMI) when increasing the number of observations.

Dim of Z 0 1 2 3 4
CMIh 8.30(0.14) 5.30(0.05) 4.37(0.04) 4.16(0.04) 4.39(0.08)

FP 16.19(0.40) 22.09(0.27) 24.28(0.21) 25.91(0.08) 27.41(0.07)
LH 0.54(0.07) 1.09(0.02) 6.52(0.12) 58.58(13.74) 691.68(123.90)
MS 16.28(0.40) 22.08(0.07) 24.26(0.10) 26.07(0.06) 27.73(0.06)

RAVK 16.14(0.11) 22.07(0.07) 24.28(0.08) 25.89(0.09) 27.44(0.14)

Table 1: We report, for each method, the mean computation time in seconds (its variance is given in parentheses), while varying
the size of the conditional set from 0 to 4 with sample size fixed to 2 000.

Local-adaptive permutation test for mixed data

Let us consider a sample of independent realisations, de-
noted (Xi, Yi, Zi)i=1,...,n, generated according to the dis-
tribution PXY Z where X , Y and Z are multidimensional
variables with quantitative and/or qualitative components.
From this sample, one can compute an estimator, denoted
Î(X;Y |Z), of the conditional mutual information using the
hybrid method CMIh. In order to perform a permutation
test, one needs to generate samples, under the null hypothe-
sis, from the distribution PX|Z(x|z)PY |Z(y|z)PZ(z). When
the conditioning variable Z is qualitative, this boils down to
randomly permuting the marginal sample of X while pre-
serving the one of Y , conditionally to each possible value
of Z (Doran et al. 2014). In the quantitative case, one pro-
ceeds in a similar way and permutes the X values of the
neighbours of each point i (Runge 2018; Doran et al. 2014).
In our case, as the variable Z possibly contains quantita-
tive and qualitative components, we propose to use an adap-
tive distance dist which corresponds to the absolute value
if the component is quantitative and to the (0−∞) distance
(which is 0 for identical values and ∞ for different values)
if the component is qualitative. For Zi = (Z1

i , . . . , Z
m
i )T

and Zj = (Z1
j , . . . , Z

m
j )T two realizations of the random

vector Z, where m is the dimension of the data, the distance
between these two points is then defined as:

D(Zi, Zj) = max
r∈{1,...,m}

dist(Zr
i , Z

r
j ).

The neighbourhood of Zi consists in the set of k points clos-
est to Zi according to D. Using the same k for all observa-
tions may however be problematic since it is possible that
the kth closest point is at a distance ∞ of a given point Zi

when k is large. In such a case, all points are in the neigh-
bourhood of Zi. To avoid this, we adapt k to each observa-
tion using one parameter ki for each observation Zi: if Z is
purely quantitative, then ki = k, where k is a global hyper-
parameter, otherwise ki = min(k, nℓ

i), where nℓi is the num-
ber of sample points which have the same qualitative values
as Zi.

Then, to generate a permuted sample, for each point i one
permutes Xi with the X value of a randomly chosen point
in the neighbourhood of i while preserving Yi and Zi: a
permuted sample thus takes the form (Xπ(i), Yi, Zi)i=1,...,n,
where π(i) is a random permutation over the neighbourhood
of i. By construction, a permuted sample is drawn under the
null hypothesis since the possible conditional dependence
is broken by the permutation. Many permuted samples fi-
nally are created, from which one can compute CMIh es-
timators under the null hypothesis. Comparing theses esti-
mators to the one of the original sample allows one to de-
termine whether the null hypothesis can be rejected or not
(Berry, Johnston, and Mielke 2018). Note that, in practice,
the permutations are drawn with replacement (Romano and
Wolf 2005).



Experimental illustration
We directly perform an analysis on real world data sets
(Links are available in Appendix). We compare our test, de-
noted by LocAT, with the local permutation test, denoted
by LocT, designed initially for purely quantitative data pro-
posed by (Runge 2018) and directly extended to mixed data
using the (0−∞) distance for qualitative components. For
LocT and LocAT, we set the hyper-parameter kperm to 5 as
proposed by (Runge 2018). For all tests, we set the num-
ber of permutation, B, to 1000. We study the behaviour of
each test with respect to the two best estimators highlighted
in the previous section, CMIh and MS. MS-G is not consid-
ered here, as most random variables in experiment settings
are unidimensional, so MS-G makes no difference with MS.
Totally, we have four estimator-test combinations: CMIh-
LocT, CMIh-LocAT, MS-LocT and MS-LocAT. We use rank
transformation in each quantitative component which has
the advantage of preserving the order and putting all quan-
titative components on the same scale (the “first” method
is used to break potential ties). We consider here two real
datasets to illustrate the behaviour of our proposed estima-
tor and test.

Preprocessed DWD dataset This climate dataset was
originally provided by the Deutscher Wetterdienst (DWD)
and preprocessed by (Mooij et al. 2016). It contains 6 vari-
ables (altitude, latitude, longitude, and annual mean values
of sunshine duration over the years 1961–1990, tempera-
ture and precipitation) collected from 349 weather stations
in Germany. We focus here on three variables, latitude, lon-
gitude and temperature, this latter variable being discretized
into three balanced classes (low, medium and high) in order
to create a mixed dataset. The goal here is to identify one un-
conditional independence (Case 1) and one conditional de-
pendence (Case 2):

• Case 1: latitude is unconditionally independent of lon-
gitude as the 349 weather stations are distributed irregu-
larly on the map.

• Case 2: latitude is dependent of longitude given temper-
ature as both latitude and longitude act on temperature:
moving a thermometer towards the equator will gener-
ally result in an increased temperature, and climate in
West Germany is more oceanic and less continental than
in East Germany.

The p-value for each method is shown in Table 2. For Case
1, the p-value should be high so that the null hypothesis is
not rejected, whereas it should be small for Case 2 as the
correct hypothesis isH1. Note that as there is no conditional
variable in Case 1, the permutation tests LocT and LocAT
give the same results.

As one can note from Table 2, under both thresholds 0.01
and 0.05, CMIh-LocT and CMIh-LocAT succeed in giving
the correct independent and dependent relations. In contrast,
MS-LocT and MS-LocAT only identify the independent re-
lation at the threshold 0.01 and never correctly identify the
conditional dependency.

EasyVista IT monitoring system This dataset consists
of five time series collected from an IT monitoring system

CMIh-LocT CMIh-LocAT MS-LocT MS-LocAT
Case 1 0.05 0.05 0.03 0.03
Case 2 0 0 0.09 0.08

Table 2: DWD: p-values for the different estimator-test com-
binations of the statistical test, which is H0 = X ⊥⊥ Y
versus H1 = X ⊥̸⊥ Y for Case 1, where X and Y cor-
respond to latitude and longitude, and H0 = X ⊥⊥ Y |Z
versus H1 = X ⊥̸⊥ Y |Z for Case 2, where X , Y and Z cor-
respond to latitude, longitude and temperature. The number
of sampling points is 349.

with a one minute sampling rate provided by the company
EasyVista. We focus on five variables: message dispatcher
(activity of a process that orient messages to other process
with respect to different types of messages), which is a quan-
titative variable, metric insertion (activity of insertion of
data in a database), which is also a quantitative variable,
status metric extraction (status of activity of extraction of
metrics from messages), which is a qualitative variable with
three classes, namely normal (≈ 75% of the observations),
warning (≈ 20% of the observations) and critical (≈ 5% of
the observations), group history insertion (activity of inser-
tion of historical status in database), which is again a quan-
titative variable, and collector monitoring information (ac-
tivity of updates in a given database) another quantitative
variable. We know exact lags between variables, so we syn-
chronise the data as a preprocessing step.

For this system we consider three cases:

• Case 1 represents a conditional independence between
message dispatcher at time t and metric insertion at time
t given status metric extraction at time t and message
dispatcher and metric insertion at time t− 1.

• Case 2 represents a conditional independence between
group history insertion at time t, collector monitoring in-
formation at time t given status metric extraction at time
t and group history insertion and collector monitoring
information at time t− 1.

• Case 3 represents a conditional dependence between sta-
tus metric extraction at time t and group history insertion
at time t given status metric extraction at time t− 1.

For each case, we consider 12 datasets with 1000 observa-
tions each. The results, reported in Table 3, are based on the
acceptance rates at thresholds 0.01 and 0.05. For conditional
independent cases, the acceptance rate corresponds to the
percentage of the p-values that are above the thresholds 0.01
and 0.05 for 10 repetitions of each method in each config-
uration. For the conditional dependent case, the acceptance
rate corresponds to the percentage of the p-value that is un-
der the thresholds 0.01 and 0.05 for 10 repetitions of each
method in each configuration. In all cases, the closer the ac-
ceptance rate is to 1, the better. Again, under each threshold,
the closer the result is to 1, the better. Finally note that we
conditioned on the past of each time series to eliminate the
effect of the autocorrelation.

As one can see, CMIh-LocT and CMIh-LocAT yield ex-
actly the same results on this dataset. Furthermore, the re-



CMIh-LocT CMIh-LocAT MS-LocT MS-LocAT
0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

Case 1 1 0.75 1 0.75 0.67 0.58 0.75 0.58
Case 2 1 0.67 1 0.67 0.92 0.75 1 0.83
Case 3 0.75 0.83 0.75 0.83 0 0 0 0

Table 3: EasyVista: 0.01 and 0.05 threshold acceptance rates for the different estimator-test combinations com-
puted for the statistical test H0 = X ⊥⊥ Y |Z versus H1 = X ⊥̸⊥ Y |Z, where X , Y and Z correspond to
message dispatchert, metric insertiont and the vector (status metric extractiont,message dispatchert−1,metric insertiont−1)
for Case 1, to group history insertiont, collector monitoring informationt and the vector
(status metric extractiont, group history insertiont−1, collector monitoring informationt−1) for Case 2 and
status metric extractiont, group history insertiont and status metric extractiont−1 for Case 3. The number of sampling
points is 1000. Each acceptance rate is computed over 12 datasets of the same structure.

sults obtained by these combinations are systematically bet-
ter than the ones obtained when using MS as the estima-
tor except for Case 2 with the threshold 0.05. However, on
this case, all combinations correctly identify the conditional
independence. Lastly, as before, MS yields poor results on
Case 3, which corresponds to a collider structure. The expla-
nation is the same as above for this structure and suggests
that MS should not be used as an estimator to conditional
mutual information.

Overall, the experiments on synthetic and real datasets in-
dicate that the combination CMIh-LocAT is robust to dif-
ferent structures and data types. This combination is well
adapted to mixed data and provides the best results overall
in our experiments.

Conclusion
We have proposed in this paper a novel hybrid method for
estimating conditional mutual information in mixed data
comprising both qualitative and quantitative variables. This
method relies on two classical approaches to estimate con-
ditional mutual information: k-nearest neighbour and his-
tograms methods. A comparison of this hybrid method to
previous ones illustrated its good behaviour, both in terms
of accuracy of the estimator and in terms of the time re-
quired to compute it. We have furthermore proposed a local
adaptive permutation test which allows one to accept or re-
ject null hypotheses. This test is also particularly adapted to
mixed data. Our experiments, conducted on both synthetic
and real data sets, show that the combination of the hybrid
estimator and the local adaptive test we have introduced is
able, contrary to other combinations, to identify the correct
conditional (in)dependence relations in a variety of cases in-
volving mixed data. To the best of our knowledge, this com-
bination is the first one fully adapted to mixed data. We be-
lieve that it will become a useful ingredient for researchers
and practitioners for problems, including but not limited to,
1) causal discovery where one aims to identify causal re-
lations between variables of a given system by analyzing
statistical properties of purely observational data, 2) graph-
ical model inference where one aims to establish a graph-
ical model which describes the statistical relationships be-
tween random variables and which can be used to compute
the marginal distribution of one or several variables, and 3)
feature selection where one aims to reduce the number of

input variables by eliminating highly dependent ones.

Data availability:
• Synthetic data are available at https://github.com/leizan/

CMIh2022;
• Preprocessed DWD dataset are available at https://

webdav.tuebingen.mpg.de/cause-effect/;
• IT monitoring data are available at

https://easyvista2015-my.sharepoint.com/:
f:/g/personal/aait-bachir easyvista com/
ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?
e=OBTsUY.

Acknowledgments
This research was partly funded by MIAI@Grenoble Alpes
grant number ANR-19-P3IA-0003. We also thank Ali Aı̈t-
Bachir and Christophe de Bignicourt from EasyVista for
providing us with the IT monitoring dataset along with the
expected independence and conditional independence be-
tween the underlying time series.

References
Ahmad, A.; and Khan, S. S. 2019. Survey of state-of-the-art
mixed data clustering algorithms. Ieee Access, 7: 31883–
31902.
Antos, A.; and Kontoyiannis, I. 2001. Estimating the entropy
of discrete distributions. In IEEE International Symposium
on Information Theory, 45–45.
Beirlant, J.; Dudewicz, E. J.; Györfi, L.; Van der Meulen,
E. C.; et al. 1997. Nonparametric entropy estimation: An
overview. International Journal of Mathematical and Sta-
tistical Sciences, 6(1): 17–39.
Berrett, T. B.; and Samworth, R. J. 2019. Nonparametric
independence testing via mutual information. Biometrika,
106(3): 547–566.
Berry, K. J.; Johnston, J. E.; and Mielke, P. W. 2018. Per-
mutation statistical methods. In The Measurement of Asso-
ciation, 19–71. Springer.
Cabeli, V.; Verny, L.; Sella, N.; Uguzzoni, G.; Verny, M.; and
Isambert, H. 2020. Learning clinical networks from medical
records based on information estimates in mixed-type data.
PLOS Computational Biology, 16(5): 1–19.



Doran, G.; Muandet, K.; Zhang, K.; and Schölkopf, B.
2014. A Permutation-Based Kernel Conditional Indepen-
dence Test. In UAI, 132–141. Citeseer.
Frenzel, S.; and Pompe, B. 2007. Partial Mutual Information
for Coupling Analysis of Multivariate Time Series. Physical
review letters, 99: 204101.
Gao, W.; Kannan, S.; Oh, S.; and Viswanath, P. 2017. Es-
timating mutual information for discrete-continuous mix-
tures. Advances in neural information processing systems,
30.
Gretton, A.; Bousquet, O.; Smola, A.; and Schölkopf, B.
2005a. Measuring statistical dependence with Hilbert-
Schmidt norms. In International conference on algorithmic
learning theory, 63–77. Springer.
Gretton, A.; Smola, A.; Bousquet, O.; Herbrich, R.; Belit-
ski, A.; Augath, M.; Murayama, Y.; Pauls, J.; Schölkopf, B.;
and Logothetis, N. 2005b. Kernel constrained covariance
for dependence measurement. In International Workshop on
Artificial Intelligence and Statistics, 112–119. PMLR.
Kozachenko, L. F.; and Leonenko, N. N. 1987. Sample esti-
mate of the entropy of a random vector. Problemy Peredachi
Informatsii, 23(2): 9–16.
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